

UNIVERSITY

Research Foundation

Background

- ✤ Native Hawaiians and Pacific Islanders (NHPIs) have typically been aggregated with Asian populations or as one NHPI group.
- Disaggregation of NHPI health data has revealed that NHPIs have higher chronic disease prevalence as compared to Asians.
- Few studies have examined NHPI ethnic groups independently

Objective

To compare chronic disease outcomes and obesity measures among self-identified Chamorros, Native Hawaiians, and Samoans.

Methods

- ✤ From 2013-2014, self-administered surveys (n=163) were given to NHPI participants in San Diego, CA
- Participants were recruited at local NHPI cultural festivals, civic and social clubs, community based organizations, and private residences
- Survey items assessed diabetes and cardiovascular disease (CVD) diagnosis by a doctor, and biological family history of cancer
- Anthropometric measures (height, weight, and waist circumference) were used to calculate Body Mass Index (BMI) and Waist-to-Height Ratio (WHtR)
- ✤ 156 participants identified as Chamorro, Native Hawaiian, or Samoan
- Chronic disease outcomes (diabetes, CVD, and cancer) were compared using Chi-Square tests
- ✤ BMI, WHtR, and Waist Circumference (WC) were compared using one-way ANOVA
- Significant tests were analyzed post-hoc utilizing multiple linear regression (BMI, WHtR, WC) and logistic regression (diabetes, CVD, cancer) while controlling for age, gender, and monthly household income

Participant Characteristics

✤ Mean Age in Years (SD): Chamorro – 46.5 (19.2), Native Hawaiian – 46.2 (17.9), Samoan 34.1 (11.5)

- ✤ % Women (n): 67.9% (106)
- ✤ % Monthly Household Income Above \$3000 (n): 72.4% (108)

Preserving Culture by Preserving Its People

Disaggregating Health Outcomes Among Native Hawaiian and Pacific Islander Subgroups

Adrian Matias Bacong, BS, Brigette Sosa, BS, Christina Holub, PhD, MPH, & The PIC Health Advisory Board San Diego State University Research Foundation, San Diego State University Institute for Behavioral and Community Health

Table 1

Chronic Disease Pre	evalence Among Pac	ific Islander Ethnicities	
	Chamorro	Native Hawaiian	Samoar
	(n = 70)	(n = 48)	(n = 38)
% Diabetes	31.4 (22)	27.7 (13)	8.1% (3
% CVD	11.8 (8)	14.9 (7)	2.6 (1)
Note: CVD = Cardio	ovascular Disease. Pa	articipants include self-ider	ntified Chame
Samoan participants	. * <i>p</i> < 0.05		

Table 2

Cancer Prevalence in Families Among Participants 40+ Years Old Mating II.

	Chamorro	Native Hawallan	Samoan
	(n = 42)	(n = 26)	(n = 12)
% Family Cancer	45.2 (19)	57.7 (15)	25.0 (3)
History			

Note: Family Cancer History = Includes participants whose biological family members have had cancer. Participants include self-identified Chamorro, Native Hawaiian, and Samoan participants. *p < 0.05

Table 3

Obesity Measures

	Chan	norro	Native H	Sar			
	(n =	70)	(n =	48)	(n =		
Measure	М	SD	М	SD	М		
BMI (kg/m^2)	31.60	6.09	31.05	6.24	35.56		
WC (cm)	103.08	14.21	104.42	14.70	110.16		
WHtR	.64	.10	.61	.13	.56		
Note. BMI = Body Ma	ass Index. W	C = Waist C	Circumference	e. WHt $R = V$	Waist-to-Hei		

include self-identified Chamorro, Native Hawaiian, and Samoan participants * p < 0.05, $p^* < 0.01$, $p^* < 0.001$

Discussion

- Diabetes prevalence significantly differed by ethnicity (p = .025). When compared to Samoans, Chamorros and Native Hawaiians had significantly higher
 - diabetes prevalence.
 - Inclusion of sociodemographic variables (age, gender, monthly household income) attenuated differences in diabetes prevalence by ethnicity.
 - ✤ Age became significantly associated with diabetes prevalence when included in the logistical model.
 - Gender and monthly household income were not significantly associated with diabetes prevalence.
- BMI (p = .006) and WHtR (p = .022) were significantly differed by ethnicity. Post-hoc Bonferroni adjustment revealed pairwise differences in BMI between Samoans and Native Hawaiians (p = .009) and Samoans and Chamorros (p = .014).
 - * Post-hoc Bonferroni adjustment revealed significant pairwise differences in WHtR between Samoans and Chamorros (p = .018).
 - Differences in obesity measures by ethnicity remained significant after inclusion of sociodemographic variables in the multiple linear regression model.
- Strengths include detailed analysis of chronic disease and obesity measures, disaggregation of NHPIs by ethnicity, inclusion of sociodemographic confounders, and regression analysis to examine possible contributions to outcome differences.
- Limitations include the relatively small sample size between different NHPI ethnicities, and possible interaction of ethnicity with covariates.

Results

Table 4

Predictors of BMI Measure

5	Model 1			Model 2				Model 3		Model 4		
Variable	В	SE B	β	В	SE B	β	В	SE B	β	В	SE B	β
Constant	36.217*	1.675	-	35.716*	1.954	_	35.921*	1.939	-	35.479*	2.436	-
Ethnicity	-1.710*	.705	201	-1.806*	.732	212	-1.690*	.728	199	-1.663*	.732	197
Age				.016	.032	.043	.023	.032	.060	.023	.032	.060
Gender							-2.295	1.205	159	-2.327	1.213	-1.61
Income										.087	.287	.025
\mathbb{R}^2		.040			.042			.067			.067	
F		5.886			3.053			3.284			2.470	
Note. BMI = Body Mass Index. "Model 1" includes self-reported ethnicity. "Model 2" introduces the interaction of age. "Model 3" introduces the interaction of gender. "Model 4" introduces the interaction of monthly income. Participants include self-identified Chamorro, Native Hawaiian, and Samoan participants * $p < 0.05$, [†] $p < 0.01$, [‡] $p < 0.001$ Table 5 Predictors of Waist Circumference												
······································												
	N	Iodel 1			Model 2			Model 3]	Model 4	
Variable -	N B	Iodel 1 SE B	β	В	Model 2 SE B	β	В	Model 3 SE B	β	B	Model 4 SE B	β
Variable	N B 112.570 [‡]	Iodel 1 SE B 3.695	β -	B 108.224 [‡]	Model 2 <i>SE B</i> 4.281	β -	B 108.202 [‡]	Model 3 <i>SE B</i> 4.289	β -	B 106.867 [‡]	Model 4 <i>SE B</i> 5.399	β -
Variable Constant Ethnicity	N B 112.570 [‡] -3.258*	Iodel 1 SE B 3.695 1.547	β - 183	$B \\ 108.224^{\ddagger} \\ -4.077^{*}$	Model 2 <i>SE B</i> 4.281 1.587	β - 229	<i>B</i> 108.202 [‡] -3.932*	Model 3 <i>SE B</i> 4.289 1.603	β - 221	B 106.867 [‡] -3.875*	Model 4 <i>SE B</i> 5.399 1.615	β - 218
Variable Constant Ethnicity Age	N B 112.570 [‡] -3.258*	Iodel 1 SE B 3.695 1.547	β - 183	<i>B</i> 108.224 [‡] -4.077* .139	Model 2 <i>SE B</i> 4.281 1.587 .071	β - 229 .174	<i>B</i> 108.202 [‡] -3.932* .145*	Model 3 <i>SE B</i> 4.289 1.603 .072	β - 221 .182	B 106.867 [‡] -3.875* .146*	Model 4 SE B 5.399 1.615 .072	β - 218 .182
Variable Constant Ethnicity Age Gender	N B 112.570 [‡] -3.258*	Iodel 1 SE B 3.695 1.547	β - 183	<i>B</i> 108.224 [‡] -4.077* .139	Model 2 <i>SE B</i> 4.281 1.587 .071	β - 229 .174	<i>B</i> 108.202 [‡] -3.932* .145* -1.937	Model 3 <i>SE B</i> 4.289 1.603 .072 2.766	β - 221 .182 062	B 106.867 [‡] -3.875* .146* -2.067	Model 4 <i>SE B</i> 5.399 1.615 .072 2.793	β - 218 .182 066
Variable Constant Ethnicity Age Gender Income	N B 112.570 [‡] -3.258*	Iodel 1 SE B 3.695 1.547	β - 183	<i>B</i> 108.224 [‡] -4.077* .139	Model 2 SE B 4.281 1.587 .071	β - 229 .174	<i>B</i> 108.202 [‡] -3.932* .145* -1.937	Model 3 SE B 4.289 1.603 .072 2.766	β - .221 .182 062	B 106.867 [‡] -3.875* .146* -2.067 .257	Model 4 <i>SE B</i> 5.399 1.615 .072 2.793 .628	β 218 .182 066 .036
Variable Constant Ethnicity Age Gender Income R ²	N B 112.570 [‡] -3.258*	Iodel 1 <i>SE B</i> 3.695 1.547 .033	β - 183	<i>B</i> 108.224 [‡] -4.077* .139	Model 2 <i>SE B</i> 4.281 1.587 .071	β - 229 .174	<i>B</i> 108.202 [‡] -3.932* .145* -1.937	Model 3 <i>SE B</i> 4.289 1.603 .072 2.766 .065	β 221 .182 062	<i>B</i> 106.867 [‡] -3.875* .146* -2.067 .257	Model 4 <i>SE B</i> 5.399 1.615 .072 2.793 .628 .067	β 218 .182 066 .036
Variable Constant Ethnicity Age Gender Income R ² F	N B 112.570 [‡] -3.258*	Iodel 1 <i>SE B</i> 3.695 1.547 .033 4.437	β - 183	<i>B</i> 108.224 [‡] -4.077* .139	Model 2 <i>SE B</i> 4.281 1.587 .071 .071	β - 229 .174	<i>B</i> 108.202 [‡] -3.932* .145* -1.937	Model 3 SE B 4.289 1.603 .072 2.766 .065 2.933	β - 221 .182 062	B 106.867 [‡] -3.875* .146* -2.067 .257	Model 4 <i>SE B</i> 5.399 1.615 .072 2.793 .628 .067 2.227	β 218 .182 066 .036
Variable Constant Ethnicity Age Gender Income R ² F Note. "Model 1" includ gender. "Model 4" intr Samoan participants. * p	$\frac{B}{112.570^{\ddagger}}$ -3.258^{\ast} des self-repoduces the $p < 0.05, ^{\dagger}p$	4odel 1 <i>SE B</i> 3.695 1.547 .033 4.437 orted eth interacti < 0.01, *	β 183 nicity. " on of mo p < 0.001	<i>B</i> 108.224 [‡] -4.077* .139	Model 2 <i>SE B</i> 4.281 1.587 .071 .062 4.171 ntroduce me. Part	β 229 .174	<i>B</i> 108.202 [‡] -3.932* .145* -1.937 eraction of include self-	Model 3 <i>SE B</i> 4.289 1.603 .072 2.766 .065 2.933 age. "Modidentified	β 221 .182 062	<i>B</i> 106.867 [‡] -3.875* .146* -2.067 .257	Model 4 <u>SE B</u> 5.399 1.615 .072 2.793 .628 .067 2.227 te interact Iawaiian,	β 218 .182 066 .036

	Model 1			Model 2			Model 3			Model 4		
Variable	В	SE B	β	В	SE B	β	В	SE B	β	В	SE B	β
Constant	.517 [‡]	.035	_	.462‡	.040	_	.461‡	.038	_	$.470^{\ddagger}$.048	_
Ethnicity	$.041^{\dagger}$.014	.245	.032*	.015	.186	$.037^{\dagger}$.014	.221	.037*	.014	.219
Age				.002*	.001	.227	$.002^{\dagger}$.001	.265	$.002^{\dagger}$.001	.265
Gender							083 [†]	.025	279	083 [†]	.025	276
Income										002	.006	024
\mathbb{R}^2		.060			.108			.182			.183	
F		8.232			7.744			9.436			7.047	
Note. "Model 1" includes self-reported ethnicity. "Model 2" introduces the interaction of age. "Model 3" introduces the interaction of												

gender. "Model 4" introduces the interaction of monthly income. Participants include self-identified Chamorro, Native Hawaiian, and Samoan participants. * p < 0.05, $^{\dagger}p < 0.01$, $^{\ddagger}p < 0.001$

- controlling for sociodemographic variables.
- comprehensive programming.

The authors would like to thank the PIC Health Research Advisory Board for their continued feedback and guidance throughout the study. We would also like to thank the Native Hawaiian and Pacific Islander community and participants of PIC Health study for telling us their stories and giving us a vibrant view of NHPI health.

This research is funded by the American Cancer Society, Postdoctoral Fellowship awarded to Christina K. Holub in Cancer Health Disparities Research, Grant #: PF-13-017-01-CPPB

To contact the respective authors of this poster for any inquiries, please email pichealth@gmail.com

Community Health

Conclusion

Different measures of obesity differ by ethnicity within San Diego's NHPI population after

Disaggregation of health data by ethnicity reveals distinct differences in health outcomes. Future studies should consider continued data disaggregation of health data by ethnicity and continue exploring the distinct cultural backgrounds of different ethnic communities to create

Acknowledgements